Мозг, общение нейронов и энергетическая эффективность

    6052d02cb63ca4ce091c45ab067c039e

    Мозг, общение нейронов и энергетическая эффективность

    Мозг, общение нейронов и энергетическая эффективность

    Мозг, общение нейронов и энергетическая эффективность

    Статья на конкурс «био/мол/текст»: Клеточные процессы, обеспечивающие обмен информацией между нейронами, требуют много энергии. Высокое энергопотребление способствовало в ходе эволюции отбору наиболее эффективных механизмов кодирования и передачи информации. В этой статье вы узнаете о теоретическом подходе к изучению энергетики мозга, о его роли в исследованиях патологий, о том, какие нейроны более продвинуты, почему синапсам иногда выгодно не «срабатывать», а также, как они отбирают только нужную нейрону информацию.

    Происхождение подхода

    С середины ХХ века известно, что головной мозг потребляет значительную часть энергоресурсов всего организма: четверть всей глюкозы и ⅕ всего кислорода в случае высшего примата [1–5]. Это вдохновило Уильяма Леви и Роберта Бакстера из Массачусетского технологического института (США) на проведение теоретического анализа энергетической эффективности кодирования информации в биологических нейронных сетях (рис. 1) [6]. В основе исследования лежит следующая гипотеза. Поскольку энергопотребление мозга велико, ему выгодно иметь такие нейроны, которые работают наиболее эффективно — передают только полезную информацию и затрачивают при этом минимум энергии.

    Это предположение оказалось справедливым: на простой модели нейронной сети авторы воспроизвели экспериментально измеренные значения некоторых параметров [6]. В частности, рассчитанная ими оптимальная частота генерации импульсов варьирует от 6 до 43 имп./с — почти так же, как и у нейронов основания гиппокампа. Их можно подразделить на две группы по частоте импульсации: медленные (~10 имп./с) и быстрые (~40 имп./с). При этом первая группа значительно превосходит по численности вторую [7]. Аналогичная картина наблюдается и в коре больших полушарий: медленных пирамидальных нейронов (~4—9 имп./с) в несколько раз больше, чем быстрых ингибиторных интернейронов (>100 имп./с) [8], [9]. Так, видимо, мозг «предпочитает» использовать поменьше быстрых и энергозатратных нейронов, чтобы те не израсходовали все ресурсы [6], [9–11].

    Мозг, общение нейронов и энергетическая эффективность

    Рисунок 1. Представлены два нейрона. В одном из них фиолетовым цветом окрашен пресинаптический белок синаптофизин. Другой нейрон полностью окрашен зеленым флуоресцентным белком. Мелкие светлые крапинки — синаптические контакты между нейронами [12]. Во вставке одна «крапинка» представлена ближе. Группы нейронов, связанных между собой синапсами, называются нейронными сетями [13], [14]. Например, в коре больших полушарий пирамидальные нейроны и интернейроны образуют обширные сети. Слаженная «концертная» работа этих клеток обусловливает наши высшие когнитивные и другие способности. Аналогичные сети, только из других типов нейронов, распределены по всему мозгу, определенным образом связаны между собой и организуют работу всего органа.

    сайт embryologie.uni-goettingen.de

    Что такое интернейроны?

    Нейроны центральной нервной системы разделяются на активирующие (образуют активирующие синапсы) и тормозящие (образуют тормозящие синапсы). Последние в значительной степени представлены интернейронами, или промежуточными нейронами. В коре больших полушарий и гиппокампе они ответственны за формирование гамма-ритмов мозга [15], которые обеспечивают слаженную, синхронную работу других нейронов. Это крайне важно для моторных функций, восприятия сенсорной информации, формирования памяти [9], [11].

    Интернейроны отличаются способностью генерировать значительно более высокочастотные сигналы, чем другие нейроны. Они также содержат больше митохондрий, главных органелл энергетического метаболизма, «фабрик» по производству АТФ. Последние к тому же содержат большое количество белков цитохром-с оксидазы и цитохрома-с, являющихся ключевыми для метаболизма. Так, интернейроны являются крайне важными и, в то же время, энергозатратными клетками [8], [9], [11], [16].

    Работа Леви и Бакстера [6] развивает концепцию «экономии импульсов» Горация Барлоу из Университета Калифорнии (США), который, кстати, является потомком Чарльза Дарвина [17]. Согласно ей, при развитии организма нейроны стремятся работать только с наиболее полезной информацией, фильтруя «лишние» импульсы, ненужную и избыточную информацию. Однако эта концепция не дает удовлетворительных результатов, так как не учитывает метаболические затраты, связанные с нейрональной активностью [6]. Расширенный подход Леви и Бакстера, в котором внимание уделено обоим факторам, оказался более плодотворным [6], [18–20]. И энергозатраты нейронов, и потребность в кодировании только полезной информации являются важными факторами, направляющими эволюцию мозга [6], [21–24]. Поэтому, чтобы лучше разобраться в том, как устроен мозг, стоит рассматривать обе эти характеристики: сколько нейрон передает полезной информации и сколько энергии при этом тратит.

    За последнее время этот подход нашел множество подтверждений [10], [22], [24–26]. Он позволил по-новому взглянуть на устройство мозга на самых разных уровнях организации — от молекулярно-биофизического [20], [26] до органного [23]. Он помогает понять, каковы компромиссы между выполняемой функцией нейрона и ее энергетической ценой и в какой степени они выражены.

    Как же работает этот подход?

    Положим, у нас есть модель нейрона, описывающая его электрофизиологические свойства: потенциал действия (ПД) и постсинаптические потенциалы (ПСП) (об этих терминах — ниже). Мы хотим понять, эффективно ли он работает, не тратит ли неоправданно много энергии. Для этого нужно вычислить значения параметров модели (например, плотность каналов в мембране, скорость их открывания и закрывания), при которых: (а) достигается максимум отношения полезной информации к энергозатратам и в то же время (б) сохраняются реалистичные характеристики передаваемых сигналов [6], [19].

    Поиск оптимума

    Фактически, речь идет о задаче оптимизации: поиска максимума функции и определения параметров, при которых он достигается. В нашем случае, функция — это отношение количества полезной информации к энергозатратам. Количество полезной информации можно примерно вычислить с помощью формулы Шеннона, широко используемой в теории информации [6], [18], [19]. Для расчета энергозатрат существуют два метода, и оба дают правдоподобные результаты [10], [27]. Один из них — «метод счета ионов» — основан на подсчете количества ионов Na+, попавших внутрь нейрона при том или ином сигнальном событии (ПД или ПСП, см. врезку «Что такое потенциал действия») с последующим переводом в число молекул аденозинтрифосфата (АТФ), главной энергетической «валюты» клеток [10]. Второй базируется на описании ионных токов через мембрану по законам электроники и позволяет вычислить мощность эквивалентной электрической цепи нейрона, которая затем переводится в затраты АТФ [17].

    Эти «оптимальные» значения параметров затем нужно сравнить с измеренными экспериментально и определить, насколько они отличаются. Общая картина отличий укажет на степень оптимизации данного нейрона в целом: насколько реальные, измеренные экспериментально, значения параметров совпадают с рассчитанными. Чем слабее выражены отличия, тем нейрон более близок к оптимуму и работает энергетически более эффективно, оптимально. С другой стороны, сопоставление конкретных параметров покажет, в каком конкретно качестве этот нейрон близок к «идеалу».

    Далее, в контексте энергетической эффективности нейронов рассмотрены два процесса, на которых основано кодирование и передача информации в мозге. Это нервный импульс, или потенциал действия, благодаря которому информация может быть отправлена «адресату» на определенное расстояние (от микрометров до полутора метров) и синаптическая передача, лежащая в основе собственно передачи сигнала от одного нейрона на другой.

    Нервные импульсы однотипны

    Главное свойство нейрона – способность вырабатывает нервный импульс и быстро проводить его. Информация о качестве и силе раздражения закодирована в изменениях частоты прохождения нервных импульсов к нейронам и от них. Частота эта варьируется в пределах от 1 до 200 в секунду. Этот код частот предполагает различные периоды следования импульсов, объединение их в группы с разным их числом и характером движения. Именно это и регистрирует энцефалограмма – сложную пространственную и временную сумму нервных импульсов мозга, ритмическую электрическую его активность.

    Читайте так же  Нисходящая частичная атрофия зрительных нервов (ЧАЗН) — что делать?

    Потенциал действия

    Потенциал действия (ПД) — сигнал, которые отправляют друг другу нейроны. ПД бывают разные: быстрые и медленные, малые и большие [28]. Зачастую они организованы в длинные последовательности (как буквы в слова), либо в короткие высокочастотные «пачки» (рис. 2).

    Мозг, общение нейронов и энергетическая эффективность

    Рисунок 2. Разные типы нейронов генерируют различные сигналы. В центре — продольный срез мозга млекопитающего. Во вставках представлены разные типы сигналов, зарегистрированные методами электрофизиологии [15], [38]. а — Кортикальные (Cerebral cortex) пирамидальные нейроны могут передавать как низкочастотные сигналы (Regular firing), так и короткие взрывные, или пачечные, сигналы (Burst firing). б — Для клеток Пуркинье мозжечка (Cerebellum) характерна только пачечная активность на очень высокой частоте. в — Релейные нейроны таламуса (Thalamus) имеют два режима активности: пачечный и тонический (Tonic firing). г — Нейроны средней части поводка (MHb, Medial habenula) эпиталамуса генерируют тонические сигналы низкой частоты.

    [14], рисунок адаптирован

    Большое разнообразие сигналов обусловлено огромным количеством комбинаций разных типов ионных каналов, синаптических контактов, а также морфологией нейронов [28], [29]. Поскольку в основе сигнальных процессов нейрона лежат ионные токи, стоит ожидать, что разные ПД требуют различных энергозатрат [20], [27], [30].

    Что такое потенциал действия?

    1. Мембрана и ионы. Плазматическая мембрана нейрона поддерживает неравномерное распределение веществ между клеткой и внеклеточной средой (рис. 3б) [31–33]. В числе этих веществ есть и маленькие ионы, из которых для описания ПД важны К+ и Nа+. Ионов Na+ внутри клетки мало, снаружи — много. Из-за этого они постоянно стремятся попасть в клетку. Напротив, ионов К+ много внутри клетки, и они норовят из нее выйти. Самостоятельно ионы этого сделать не могут, потому что мембрана для них непроницаема. Для прохождения ионов через мембрану необходимо открывание специальных белков — ионных каналов мембраны.
    2. Мозг, общение нейронов и энергетическая эффективность

      Рисунок 3. Нейрон, ионные каналы и потенциал действия. а — Реконструкция клетки-канделябра коры головного мозга крысы. Синим окрашены дендриты и тело нейрона (синее пятно в центре), красным — аксон (у многих типов нейронов аксон разветвлен намного больше, чем дендриты [8], [11], [35]). Зеленые и малиновые стрелки указывают направление потока информации: дендриты и тело нейрона принимают ее, аксон — отправляет ее к другим нейронам. б — Мембрана нейрона, как и любой другой клетки, содержит ионные каналы. Зеленые кружки — ионы Na+, синие — ионы К+. в — Изменение мембранного потенциала при генерации потенциала действия (ПД) нейроном Пуркинье. Зеленая область: Na-каналы открыты, в нейрон входят ионы Na+, происходит деполяризация. Синяя область: открыты К-каналы, К+ выходит, происходит реполяризация. Перекрывание зеленой и синей областей соответствует периоду, когда происходит одновременный вход Na+ и выход К+.

      [34], [36], [37], рисунки адаптированы

    3. Ионные каналы. Разнообразие каналов огромно [14], [36], [38], [39]. Одни открываются в ответ на изменение мембранного потенциала, другие — при связывании лиганда (нейромедиатора в синапсе, например), третьи — в результате механических изменений мембраны и т.д. Открывание канала заключается в изменении его структуры, в результате которого через него могут проходить ионы. Некоторые каналы пропускают только определенный тип ионов, а для других характерна смешанная проводимость. В генерации ПД ключевую роль играют каналы, «чувствующие» мембранный потенциал, — потенциал-зависимые ионные каналы . Они открываются в ответ на изменение мембранного потенциала. Среди них нас интересуют потенциал-зависимые натриевые каналы (Na-каналы), пропускающие только ионы Na+, и потенциал-зависимые калиевые каналы (K-каналы), пропускающие только ионы К+.
    4. ПД — это относительно сильное по амплитуде скачкообразное изменение мембранного потенциала.

    5. Ионный ток и ПД. Основой ПД является ионный ток — движение ионов через ионные каналы мембраны [38]. Так как ионы заряжены, их ток приводит к изменению суммарного заряда внутри и вне нейрона, что немедленно влечет за собой изменение мембранного потенциала. Генерация ПД, как правило, происходит в начальном сегменте аксона — в той его части, что примыкает к телу нейрона [40], [14]. Тут сконцентрировано много Na-каналов. Если они откроются, внутрь аксона хлынет мощный ток ионов Na+, и произойдет деполяризация мембраны — уменьшение мембранного потенциала по абсолютной величине (рис. 3в). Далее необходимо возвращение к его исходному значению — реполяризация. За это отвечают ионы К+. Когда К-каналы откроются (незадолго до максимума ПД), ионы К+ начнут выходить из клетки и реполяризовать мембрану. Деполяризация и реполяризация — две основные фазы ПД. Помимо них выделяют еще несколько, которые из-за отсутствия необходимости здесь не рассматриваются. Детальное описание генерации ПД можно найти в [14], [29], [38], [41]. Краткое описание ПД есть также в статьях на «Биомолекуле» [15], [42].
    6. Начальный сегмент аксона и инициация ПД. Что приводит к открыванию Na-каналов в начальном сегменте аксона? Опять же, изменение мембранного потенциала, «приходящее» по дендритам нейрона (рис. 3а). Это — постсинаптические потенциалы (ПСП), возникающие в результате синаптической передачи. Подробнее этот процесс объясняется в основном тексте.
    7. Проведение ПД. К ПД в начальном сегменте аксона будут неравнодушны Na-каналы, находящиеся неподалеку. Они тоже откроются в ответ на это изменение мембранного потенциала, что также вызовет ПД. Последний, в свою очередь, вызовет аналогичную «реакцию» на следующем участке аксона, все дальше от тела нейрона, и так далее. Таким образом происходит проведение ПД вдоль аксона [14], [15], [38]. В конце концов он достигнет его пресинаптических окончаний (малиновые стрелки на рис. 3а), где сможет вызвать синаптическую передачу.
    8. Энергозатраты на генерацию ПД меньше, чем на работу синапсов. Скольких молекул аденозинтрифосфата (АТФ), главной энергетической «валюты», стоит ПД? По одной из оценок, для пирамидальных нейронов коры мозга крысы энергозатраты на генерацию 4 ПД в секунду составляют около ⅕ от общего энергопотребления нейрона. Если учесть другие сигнальные процессы, в частности, синаптическую передачу, доля составит ⅘. Для коры мозжечка, отвечающего за двигательные функции, ситуация похожа: энергозатраты на генерацию выходного сигнала составляют 15% от всех, а около половины приходится на обработку входной информации [25]. Так, ПД является далеко не самым энергозатратным процессом. В разы больше энергии требует работа синапса [5], [19], [25]. Однако это не означает, что процесс генерации ПД не проявляет черт энергетической эффективности.
    Читайте так же  Ацетилхолин и его функции

    Анализ разных типов нейронов (рис. 4) показал, что нейроны беспозвоночных не очень энергоэффективны, а некоторые нейроны позвоночных почти совершенны [20]. По результатам этого исследования, наиболее энергоэффективными оказались интернейроны гиппокампа, участвующего в формировании памяти и эмоций, а также таламокортикальные релейные нейроны, несущие основной поток сенсорной информации от таламуса к коре больших полушарий.

    Мозг, общение нейронов и энергетическая эффективность

    Рисунок 4. Разные нейроны эффективны по-разному. На рисунке представлено сравнение энергозатрат разных типов нейронов. Энергозатраты рассчитаны в моделях как с исходными (реальными) значениями параметров (черные столбцы), так и с оптимальными, при которых с одной стороны нейрон выполняет положенную ему функцию, с другой — затрачивает при этом минимум энергии (серые столбцы). Самыми эффективными из представленных оказались два типа нейронов позвоночных: интернейроны гиппокампа (rat hippocampal interneuron, RHI) и таламокортикальные нейроны (mouse thalamocortical relay cell, MTCR), так как для них энергозатраты в исходной модели наиболее близки к энергозатратам оптимизированной. Напротив, нейроны беспозвоночных менее эффективны. Условные обозначения: SA (squid axon) — гигантский аксон кальмара; CA (crab axon) — аксон краба; MFS (mouse fast spiking cortical interneuron) — быстрый кортикальный интернейрон мыши; BK (honeybee mushroom body Kenyon cell) — грибовидная клетка Кеньона пчелы.

    [20], рисунок адаптирован

    Почему они более эффективны? Потому что у них малó перекрывание Na- и К-токов. Во время генерации ПД всегда есть промежуток времени, когда эти токи присутствуют одновременно (рис. 3в). При этом переноса заряда практически не происходит, и изменение мембранного потенциала минимально. Но «платить» за эти токи в любом случае приходится, несмотря на их «бесполезность» в этот период. Поэтому его продолжительность определяет, сколько энергетических ресурсов растрачивается впустую. Чем он короче, тем более эффективно использование энергии [20], [26], [30], [43]. Чем длиннее — тем менее эффективно. Как раз в двух вышеупомянутых типах нейронов, благодаря быстрым ионным каналам, этот период очень короткий, а ПД — самые эффективные [20].

    Кстати, интернейроны гораздо более активны, чем большинство других нейронов мозга. В то же время они крайне важны для слаженной, синхронной работы нейронов, с которыми образуют небольшие локальные сети [9], [16]. Вероятно, высокая энергетическая эффективность ПД интернейронов является некой адаптацией к их высокой активности и роли в координации работы других нейронов [20].

    Гальваника и нервный импульс

    В полужидкой коллоидной протоплазме ток гальванический – его переносят атомы, имеющие электрический заряд (ионы). Но гальванический ток не может распространяться на довольно большие расстояния, а нервный импульс может. Почему? Ответ прост. Когда волна потенциала действия проходит по аксону, то он образует внутри нейрона гальванический элемент. В нерве, как в любом гальваническом элементе, есть положительный полюс (наружная сторона мембраны) и отрицательный полюс (внутренняя сторона мембраны). Любое воздействие извне нарушает равновесие этих полюсов, проницаемость конкретного участка мембраны меняется, инициируется изменение проницаемости на соседнем участке. Все, импульс пошел дальше по длине аксона. А начальный участок, с которого возбуждение началось, уже восстановил свою целостность, нашел свой нулевой градиент и готов снова запускать потенциал действия в нейроне.

    Мозг, общение нейронов и энергетическая эффективность

    Синапс

    Передача сигнала от одного нейрона к другому происходит в специальном контакте между нейронами, в синапсе [12]. Мы рассмотрим только химические синапсы (есть еще электрические), поскольку они весьма распространены в нервной системе и важны для регуляции клеточного метаболизма, доставки питательных веществ [5].

    Чаще всего, химический синапс образован между окончанием аксона одного нейрона и дендритом другого. Его работа напоминает… «переброс» эстафетной палочки, роль которой и играет нейромедиатор — химический посредник передачи сигнала [12], [42], [44–48].

    На пресинаптическом окончании аксона ПД вызывает выброс нейромедиатора во внеклеточную среду — к принимающему нейрону. Последний только этого и ждет с нетерпением: в мембране дендритов рецепторы — ионные каналы определенного типа — связывают нейромедиатор, открываются и пропускают через себя разные ионы. Это приводит к генерации маленького постсинаптического потенциала (ПСП) на мембране дендрита. Он напоминает ПД, но значительно меньше по амплитуде и происходит за счет открывания других каналов. Множество этих маленьких ПСП, каждый от своего синапса, «сбегаются» по мембране дендритов к телу нейрона (зеленые стрелки на рис. 3а) и достигают начального сегмента аксона, где вызывают открывание Na-каналов и «провоцируют» его на генерацию ПД.

    Такие синапсы называются возбуждающими: они способствуют активации нейрона и генерации ПД. Существуют также и тормозящие синапсы. Они, наоборот, способствуют торможению и препятствуют генерации ПД. Часто на одном нейроне есть и те, и другие синапсы. Определенное соотношение между торможением и возбуждением важно для нормальной работы мозга, формирования мозговых ритмов, сопровождающих высшие когнитивные функции [49].

    Как это ни странно, выброс нейромедиатора в синапсе может и не произойти вовсе — это процесс вероятностный [18], [19]. Нейроны так экономят энергию: синаптическая передача и так обусловливает около половины всех энергозатрат нейронов [25]. Если бы синапсы всегда срабатывали, вся энергия пошла бы на обеспечение их работы, и не осталось бы ресурсов для других процессов. Более того, именно низкая вероятность (20–40%) выброса нейромедиатора соответствует наибольшей энергетической эффективности синапсов. Отношение количества полезной информации к затрачиваемой энергии в этом случае максимально [18], [19]. Так, выходит, что «неудачи» играют важную роль в работе синапсов и, соответственно, всего мозга. А за передачу сигнала при иногда «не срабатывающих» синапсах можно не беспокоиться, так как между нейронами обычно много синапсов, и хоть один из них да сработает.

    Еще одна особенность синаптической передачи состоит в разделении общего потока информации на отдельные компоненты по частоте модуляции приходящего сигнала (грубо говоря, частоте приходящих ПД) [50]. Это происходит благодаря комбинированию разных рецепторов на постсинаптической мембране [38], [50]. Некоторые рецепторы активируются очень быстро: например, AMPA-рецепторы (AMPA происходит от α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid). Если на постсинаптическом нейроне представлены только такие рецепторы, он может четко воспринимать высокочастотный сигнал (такой, как, например, на рис. 2в). Ярчайший пример — нейроны слуховой системы, участвующие в определении местоположения источника звука и точном распознавании коротких звуков типа щелчка, широко представленных в речи [12], [38], [51]. NMDA-рецепторы (NMDA — от Nmethyl-Daspartate) более медлительны. Они позволяют нейронам отбирать сигналы более низкой частоты (рис. 2г), а также воспринимать высокочастотную серию ПД как нечто единое — так называемое интегрирование синаптических сигналов [14]. Есть еще более медленные метаботропные рецепторы, которые при связывании нейромедиатора, передают сигнал на цепочку внутриклеточных «вторичных посредников» для подстройки самых разных клеточных процессов. К примеру, широко распространены рецепторы, ассоциированные с G-белками. В зависимости от типа они, например, регулируют количество каналов в мембране или напрямую модулируют их работу [14].

    Читайте так же  Многофокусные хрусталики при катаракте — цена и где ставят в Москве

    Различные комбинации быстрых AMPA-, более медленных NMDA- и метаботропных рецепторов позволяют нейронам отбирать и использовать наиболее полезную для них информацию, важную для их функционирования [50]. А «бесполезная» информация отсеивается, она не «воспринимается» нейроном. В таком случае не приходится тратить энергию на обработку ненужной информации. В этом и состоит еще одна сторона оптимизации синаптической передачи между нейронами.

    Cинапс.

    Каждый нейрон имеет специализированную связь с мышцами, железами или другими нейронами. Зона функционального контакта двух нейронов называется синапсом. Межнейронные синапсы образуются между различными частями двух нервных клеток: между аксоном и дендритом, между аксоном и телом клетки, между дендритом и дендритом, между аксоном и аксоном. Нейрон, посылающий импульс к синапсу, называют пресинаптическим; нейрон, получающий импульс, – постсинаптическим. Синаптическое пространство имеет форму щели. Нервный импульс, распространяющийся по мембране пресинаптического нейрона, достигает синапса и стимулирует высвобождение особого вещества – нейромедиатора – в узкую синаптическую щель. Молекулы нейромедиатора диффундируют через щель и связываются с рецепторами на мембране постсинаптического нейрона. Если нейромедиатор стимулирует постсинаптический нейрон, его действие называют возбуждающим, если подавляет – тормозным. Результат суммации сотен и тысяч возбуждающих и тормозных импульсов, одновременно стекающихся к нейрону, – основной фактор, определяющий, будет ли этот постсинаптический нейрон генерировать нервный импульс в данный момент.

    У ряда животных (например, у лангуста) между нейронами определенных нервов устанавливается особо тесная связь с формированием либо необычно узкого синапса, т.н. щелевого соединения, либо, если нейроны непосредственно контактируют друг с другом, плотного соединения. Нервные импульсы проходят через эти соединения не при участии нейромедиатора, а непосредственно, путем электрической передачи. Немногочисленные плотные соединения нейронов имеются и у млекопитающих, в том числе у человека.

    Что еще?

    Энергетическая эффективность клеток мозга исследуется также и в отношении их морфологии [35], [52–54]. Исследования показывают, что ветвление дендритов и аксона не хаотично и тоже экономит энергию [52], [54]. Например, аксон ветвится так, чтобы суммарная длина пути, который проходит ПД, была наименьшей. В таком случае энергозатраты на проведение ПД вдоль аксона минимальны.

    Снижение энергозатрат нейрона достигается также при определенном соотношении тормозящих и возбуждающих синапсов [55]. Это имеет прямое отношение, например, к ишемии (патологическому состоянию, вызванному нарушением кровотока в сосудах) головного мозга. При этой патологии, вероятнее всего, первыми выходят из строя наиболее метаболически активные нейроны [9], [16]. В коре они представлены ингибиторными интернейронами, образующими тормозящие синапсы на множестве других пирамидальных нейронов [9], [16], [49]. В результате гибели интернейронов, снижается торможение пирамидальных. Как следствие, возрастает общий уровень активности последних (чаще срабатывают активирующие синапсы, чаще генерируются ПД). За этим немедленно следует рост их энергопотребления, что в условиях ишемии может привести к гибели нейронов.

    При изучении патологий внимание уделяют и синаптической передаче как наиболее энергозатратному процессу [19]. Например, при болезнях Паркинсона [56], Хантингтона [57], Альцгеймера [58–61] происходит нарушение работы или транспорта к синапсам митохондрий, играющих основную роль в синтезе АТФ [62], [63]. В случае болезни Паркинсона, это может быть связано с нарушением работы и гибелью высоко энергозатратных нейронов черной субстанции, важной для регуляции моторных функций, тонуса мышц. При болезни Хантингтона, мутантный белок хангтингтин нарушает механизмы доставки новых митохондрий к синапсам, что приводит к «энергетическому голоданию» последних, повышенной уязвимости нейронов и избыточной активации. Все это может вызвать дальнейшие нарушения работы нейронов с последующей атрофией полосатого тела и коры головного мозга. При болезни Альцгеймера нарушение работы митохондрий (параллельно со снижением количества синапсов) происходит из-за отложения амилоидных бляшек. Действие последних на митохондрии приводит к окислительному стрессу, а также к апоптозу — клеточной гибели нейронов.

    Еще раз обо всем

    В конце ХХ века зародился подход к изучению мозга, в котором одновременно рассматривают две важные характеристики: сколько нейрон (или нейронная сеть, или синапс) кодирует и передает полезной информации и сколько энергии при этом тратит [6], [18], [19]. Их соотношение является своего рода критерием энергетической эффективности нейронов, нейронных сетей и синапсов.

    Использование этого критерия в вычислительной нейробиологии дало существенный прирост к знаниям относительно роли некоторых явлений, процессов [6], [18–20], [26], [30], [43], [55]. В частности, малая вероятность выброса нейромедиатора в синапсе [18], [19], определенный баланс между торможением и возбуждением нейрона [55], выделение только определенного рода приходящей информации благодаря определенной комбинации рецепторов [50] — все это способствует экономии ценных энергетических ресурсов.

    Более того, само по себе определение энергозатрат сигнальных процессов (например, генерация, проведение ПД, синаптическая передача) позволяет выяснить, какой из них пострадает в первую очередь при патологическом нарушении доставки питательных веществ [10], [25], [56]. Так как больше всего энергии требуется для работы синапсов, именно они первыми выйдут из строя при таких патологиях, как ишемия, болезни Альцгеймера и Хантингтона [19], [25]. Схожим образом определение энергозатрат разных типов нейронов помогает выяснить, какой из них погибнет раньше других в случае патологии. Например, при той же ишемии, в первую очередь выйдут из строя интернейроны коры [9], [16]. Эти же нейроны из-за интенсивного метаболизма — наиболее уязвимые клетки и при старении, болезни Альцгеймера и шизофрении [16].

    В общем, подход к определению энергетически эффективных механизмов работы мозга является мощным направлением для развития и фундаментальной нейронауки, и ее медицинских аспектов [5], [14], [16], [20], [26], [55], [64].

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *